Reactive Magnetron Sputter Deposition of Bismuth Tungstate Coatings for Water Treatment Applications under Natural Sunlight

نویسندگان

  • Marina Ratova
  • Rafaela B. P. Marcelino
  • P. de Souza
  • Camila C. Amorim
  • Peter J. Kelly
چکیده

Bismuth complex oxides, in particular, bismuth tungstate, have recently attracted attention as promising photocatalytic materials for water treatment processes. In the present work, photocatalytic bismuth tungstate films were prepared by pulsed direct current (DC) reactive magnetron sputtering of Bi and W targets in an Ar/O2 atmosphere onto spherically-shaped glass beads. The uniform coverage of the substrate was enabled by the use of oscillating bowl placed underneath the magnetrons. The atomic ratio of Bi/W was varied through the variation of the power applied to the magnetrons. The deposited coatings were analyzed by the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy and atomic force microscopy. The photocatalytic properties of the films were studied via the methylene blue (MB) degradation process under artificial (fluorescent light) and natural (sunlight) irradiation, and compared to the photocatalytic performance of titanium dioxide coatings deposited onto identical substrates. The results showed that the photocatalytic performance of bismuth tungstate and bismuth oxide-coated beads was superior to that exhibited by TiO2-coated beads. Overall, reactive magnetron co-sputtering has been shown to be a promising technique for deposition of narrow band gap bismuth-based semiconducting oxides onto irregularly-shaped substrates for potential use in water treatment applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity

A novel powder handling technique was used to allow the deposition of bismuth tungstate coatings onto commercial titanium dioxide photocatalytic nanoparticles. The coatings were deposited by reactive pulsed DC magnetron sputtering in an argon/oxygen atmosphere. The use of an oscillating bowl with rotary particle propagation, positioned beneath two closed-field planar magnetrons, provided unifor...

متن کامل

Decorative Titanium Nitride Colored Coatings on Bell-Metal by Reactive Cylindrical Magnetron Sputtering

The transition metal nitrides like titanium nitride exhibit very interesting color variation properties depending on the different plasma deposition conditions using cylindrical magnetron sputtering method. It is found in this deposition study that nitrogen partial pressure in the reactive gas discharge environment plays a significant role on the color variation of the film coatings on bell-met...

متن کامل

Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering

Bismuth molybdate thin films were deposited by reactive magnetron co-sputtering from two metallic targets in an argon/oxygen atmosphere, reportedly for the first time. Energy dispersive X-ray spectroscopy (EDX) analysis showed that the ratio of bismuth to molybdenum in the coatings can be effectively controlled by varying the power applied to each target. Deposited coatings were annealed in air...

متن کامل

Deposition of Multilayer Optical Coatings Using Closed Field Magnetron Sputtering

Closed field” magnetron (CFM) sputtering offers a flexible and high throughput deposition process for optical coatings and thin films required in display technologies. CFM sputtering uses two or more different metal targets to deposit multilayers comprising a wide range of dielectrics, metals and conductive oxides. Moreover, CFM provides a room temperature deposition process with high ion curre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017